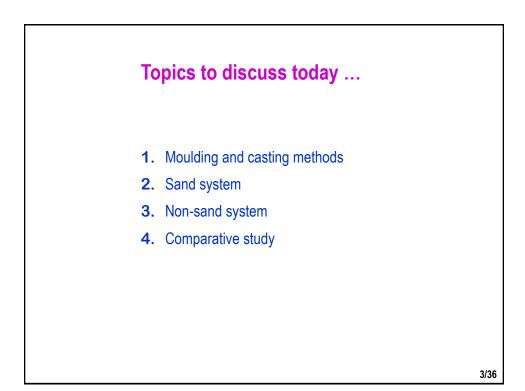
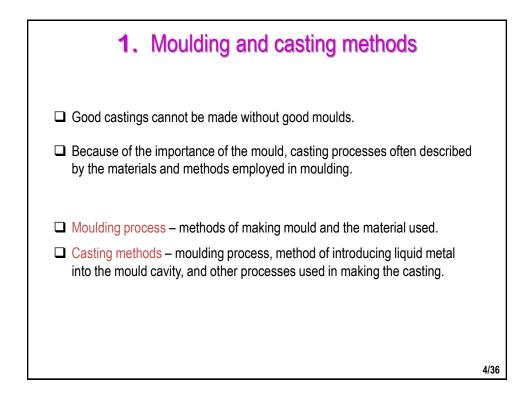
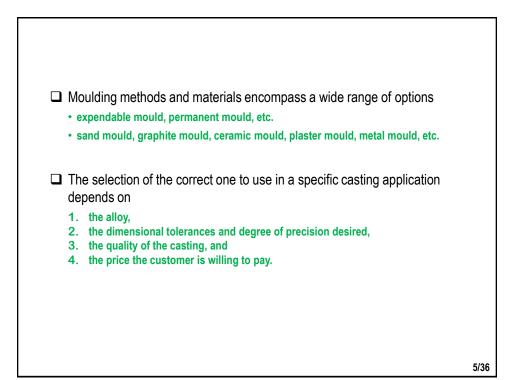
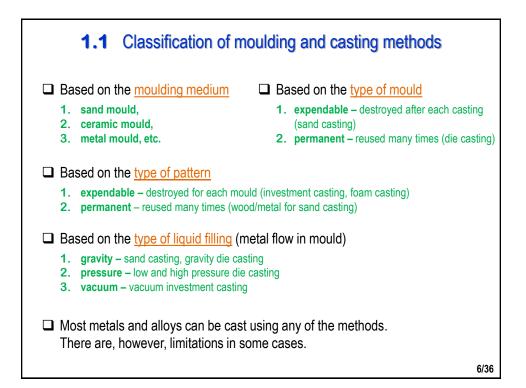


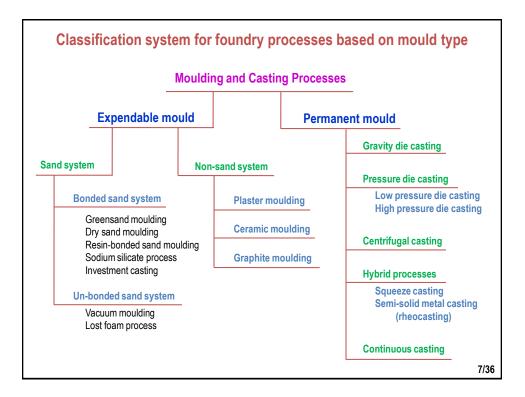
MME 345, Lecture A:03

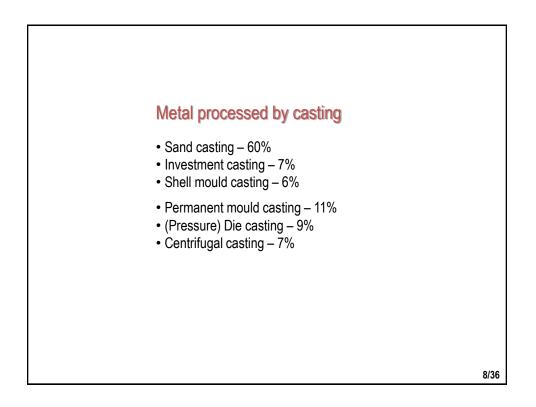

Moulding and Casting Methods

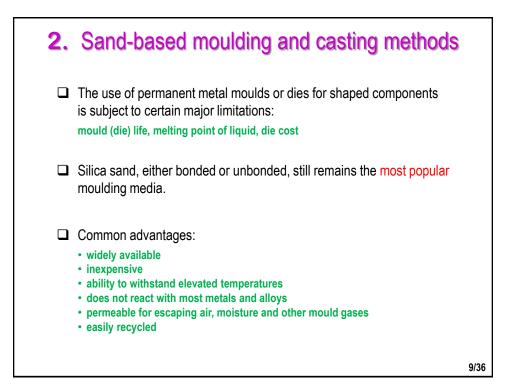

1. General methods of moulding and casting

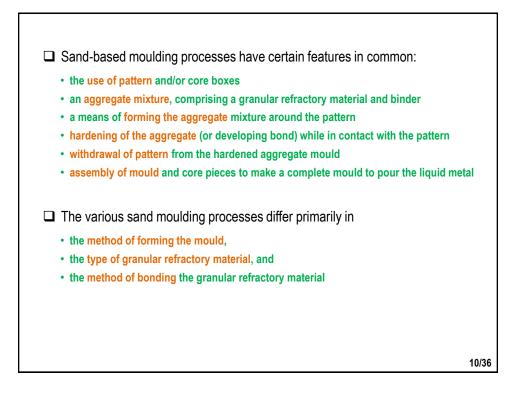

Ref:

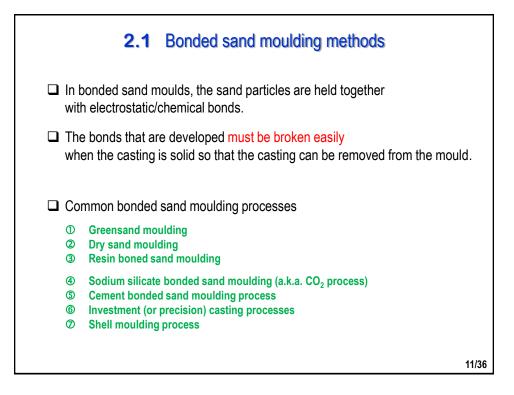

[1] Heine, Loper & Rosenthal, <u>Principles of Metal Casting</u>, McGraw-Hill, 1976

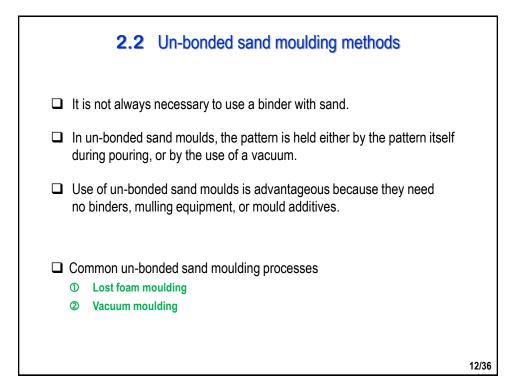

[2] Beeley, Foundry Technology, Butterworth-Heinemann, 2001

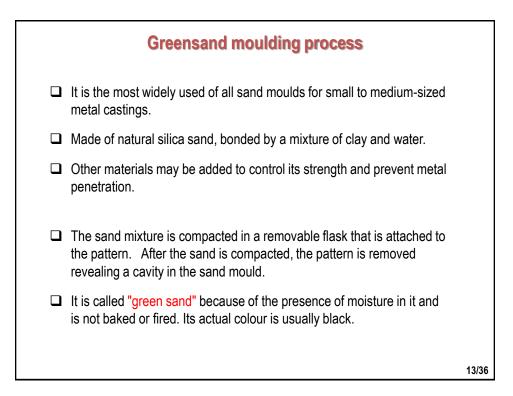


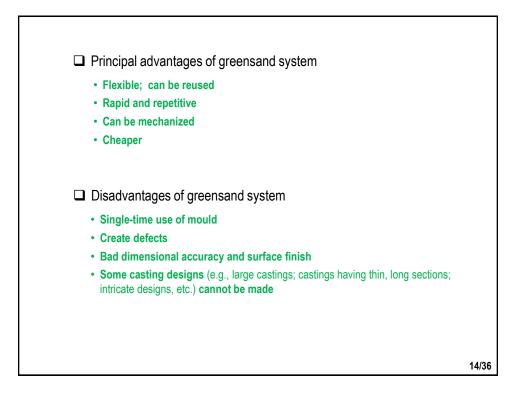


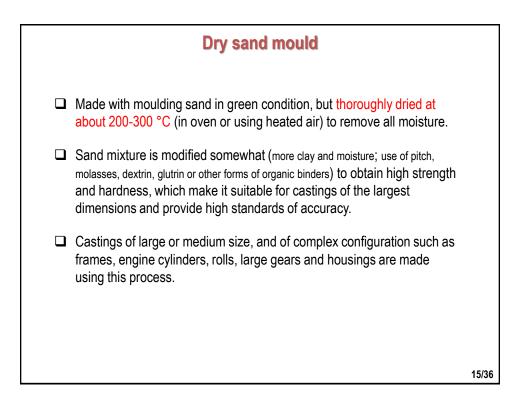


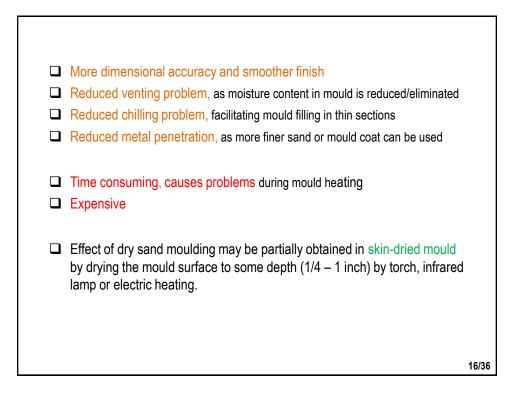


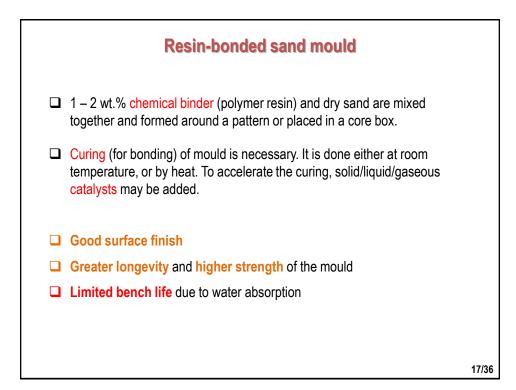


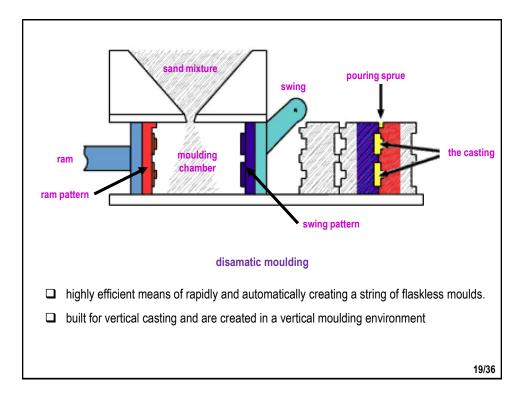


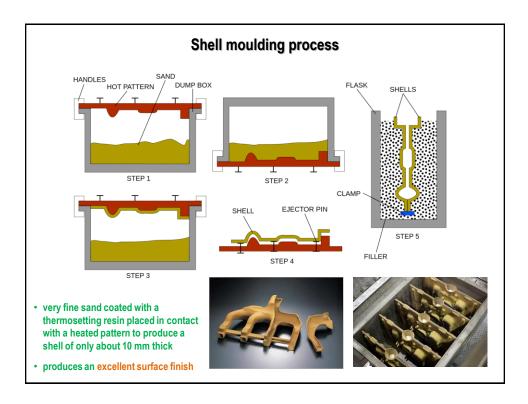


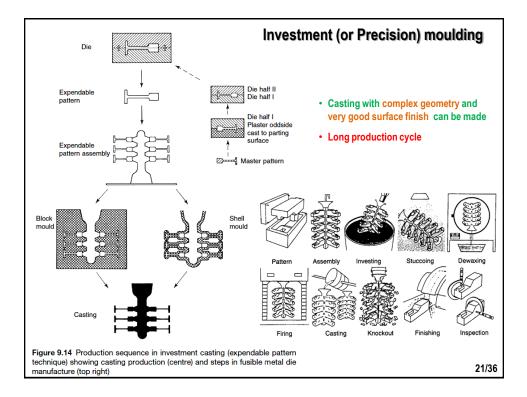


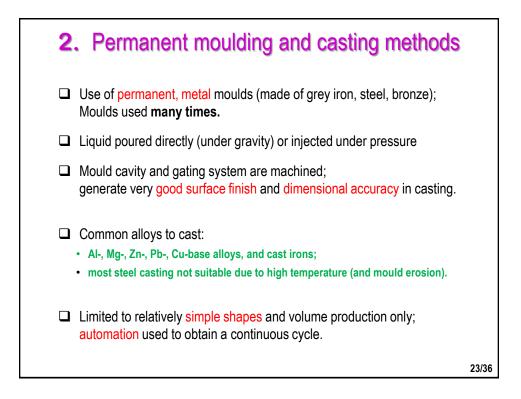


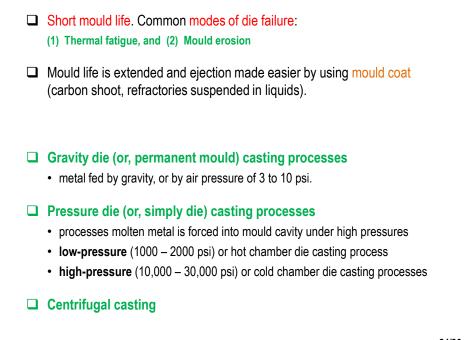


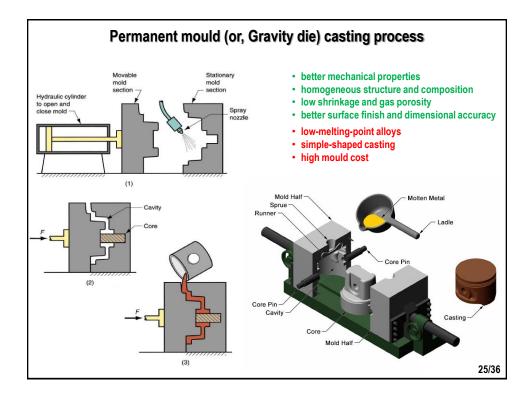


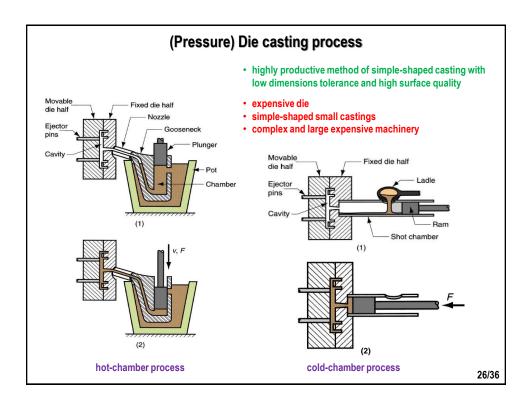


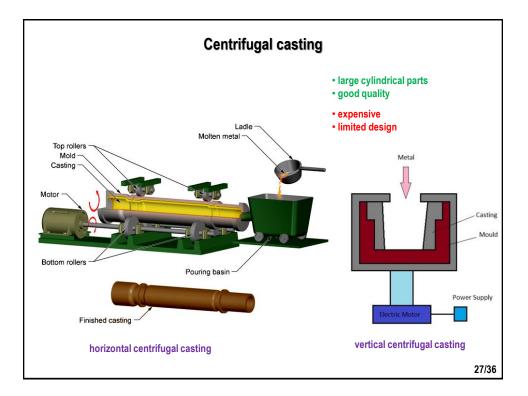












	4. Comparative study
	Process
Sand casting	Sand moulds are produced around a permanent pattern that is withdrawn to leave a cavity. Molten metal is poured into the mould and solidifies. Mould (and core) is broken up to retrieve the casting.
Investment casting	A ceramic shell (investment) is slip cast around a wax pattern. Wax is melted and molten metal cast into the investment that is broken up to remove the casting.
Permanent mould casting	Molten metal poured into a metallic mould where it solidifies.
Pressure die casting	Molten metal is forced into a water-coated metal mould (die) through a system of sprues and runners. The metal solidifies rapidly and the casting is removed with its sprue and runners.
Centrifugal casting	Molten metal is introduced into a sand- or copper-lined, cylindrical steel mould that is rotated about its long axis, distributing the metal over its inner surface.
Full mould casting	A refractory coating is applied to a volatile or combustible pattern that is used in a sand mould. The pattern is destroyed by the molten metal.

	Shape	Material
Sand casting	Mainly solid components but complex internal shapes produced using friable cores. Very large and small castings possible but thin sections difficult.	All metals excluding refractory and reactive alloys (e.g. titanium).
Investment casting	Best for relatively small, complex 3D components. Re-entrant angles possible.	Suitable for most metals. Reactive metals can be cast under vacuum.
Permanent mould casting	Mostly used for small, simple shapes with only simple coring.	Mainly used for light alloys. Steels and cast irons also possible.
Pressure die casting	Used for complex shapes and thin sections. Cores must be simple and retractable.	High fluidity requirement means low melting temperature eutectics usually used (e.g. Al-Si). Hot chamber method restricted to very low melting temperature alloys (e.g. Mg and Zn).
Centrifugal casting	Technique used to produce relatively long, hollow objects (e.g. pipes) without the need for cores.	Metals excluding refractory and reactive metals
Full mould casting	Very complex 3D shapes possible.	Non-refractory metals with casting temperatures high enough to vaporise the pattern.

	Cycle time	Quality
Sand casting	Usually long as limited by rate of heat transfer out of the casting. Use of multiple moulds increases production rate.	Surface texture poor. Porosity endemic. Non-metallic inclusions difficult to control.
Investment casting	Limited by rate of heat transfer out of the casting. Production rates low because of process complexity. Increased by using multiple moulds and patterns.	Surface texture good. Higher mould temperatures decrease porosity but produce coarse microstructures.
Permanent mould casting	Limited by rate of heat transfer across the interface. Production rates can be increased by using multiple moulds.	Surface texture is good. Porosity unavoidable but can be minimized by slower mould filling to reduce turbulence.
Pressure die casting	Solidification time is typically < 1 s so cycle is controlled by time taken to fill mould and remove casting.	Good surface texture but tolerable mould filling produces high degree of internal porosity.
Centrifugal casting	Determined by the rate of introduction of metal into the mould and the rate of solidification of the metal. The latter is lowered for sand-lined moulds.	Porosity and non-metallic inclusions migrate towards the inner surface because of their low density, giving a high quality outer surface.
Full mould casting	Long due to process complexity. Multiple moulds increase production rate.	Normal sand casting defects. Surface texture similar to that of pattern.

	Flexibility	Material utilisation	Operating cost
Sand casting	Patterns cheap and easy to make.	Up to 50% of casting in runners and feeders. Both mould and scrap metal can be directly recycled.	Very low as pattern costs are low and making is relatively easy.
Investment casting	Moderately high because of the ease of production patterns.	Near net shape process with little material contained in feeding systems. Wax recycled, investment lost.	Equipment costs can be high especially where reactive alloys are concerned. Labour costs are high due to the many stages in the process.
Permanent mould casting	Negligible setting up time for manual operation. Mould making relatively difficult.	Rarely better than 60% utilization. Scrap in the runners and feeders can be directly recycled.	Equipment cost can be limited to mould and melt preparation apparatus
Pressure die casting	Tooling dictated so limited by machine setting up time.	Near net shape process but some scrap in sprues, runners and flash which can be directly recycled.	High, since machine and moulds are expensive.
Centrifugal casting	Setting up times are relatively short.	Absence of runners and risers leads to near 100% use of material.	Equipment is relatively simple and car cost a little. Increased complexity of water-cooled copper-lined moulds more costly.
Full mould casting	Ideal for manufacturing one-offs.	Pattern material entirely wasted. Metal usage poor.	All equipment involved is rudimentary and process is very cheap to operate.

	Advantage	Disadvantage
Sand casting	Almost any metal is cast; no limit on size, shape or weight; low tooling cost.	Some finishing required; somewhat coarse finish; wide tolerances.
Investment casting	Intricate shapes; excellent surface finish and accuracy; almost any metal cast.	Part size limited; expensive patterns, moulds and labour.
Permanent mould casting	Good surface finish and dimensional accuracy; low porosity; high production rate	High mould cost; limited shape and intricacy; not suitable for refractory metals.
Pressure die casting	Excellent dimensional accuracy and surface finish; high production rate.	Die and machine cost high; part size limited; usually limited to non-ferrous alloys; long lead time
Centrifugal casting	Small and large cylindrical parts with good quality; high production rate.	Equipment is expensive; part shape limited.
Full mould casting	Most metal cast with no limit on size; complex shapes.	Patterns have low strength; can be costly for low quantities

	Turnian I material east	Weigl	nt (kg)	Typical surface
	Typical material cast	Minimum	Maximum	finish (μm)
Sand casting	All	0.05	No limit	5-25
Investment casting	All (high melting points)	0.005	100+	1-3
Permanent mould casting	All	0.5	300	2-3
Pressure die casting	Nonferrous (Al, Mg, Zn, Cu)	<0.05	50	1-2
Centrifugal casting	All		5000+	2-10
Full mould casting	All	0.05	No limit	5-20

	Demesites	Shape	Dimensional	Section thic	kness (mm)
	Porosity	complexity	accuracy	Minimum	Maximum
Sand casting	4	1-2	3	3	No limit
Investment casting	3	1	1	1	75
Permanent mould casting	2-3	3-4	1	2	50
Pressure die casting	1-2	3-4	1	0.5	12
Centrifugal casting	1-2	3-4	3	2	100
Full mould casting	4	1	2	2	No limit

Relative rating: 1 - best, 5 - worst; These ratings are only general; significant variations can occur depending on the methods used.

DieEquipmentLabour(Pc/hr)aand castingLLL-M<20nvestment castingM-HL-MH<1000Permanent mould castingMML-M<60Pressure die castingHHL-M<200
Investment casting M-H L-M H <1000
Permanent mould casting M M L-M <60 Pressure die casting H H L-M <200
Pressure die casting H H L-M <200
······································
Centrifugal casting M H L-M <50
full mould casting M-H <50

Next Class MME 345, Lecture A:04 Moulding and Casting Methods 2. Greensand moulding process